Merrimack School District Essential Learning Competencies

School	Merrimack High School	
Discipline	Science	
Course Title	Honors Chemistry	

Quarter 1

Essential Learning	Links to the	Formative	Summative
Competencies	Rubrics/Standards/Competency	Assessments	Assessments
1. Students should		Worksheets;	Test/problem
understand the		virtual lab	set
nature of subatomic			
particles and their			
affects on the			
structure of atoms &			
properties of matter.			
2. Students should		Worksheets;	Test/problem
understand isotopes		virtual lab	set
and be able to			
determine average			
atomic mass.			
3. Students should		Worksheets;	Test/problem
know about light		virtual lab	set
and how it interacts			
with matter.			
4. Students should		Worksheets;	Test/problem
be able to write		virtual lab	set
electron			
configurations and			
relate them to			
atomic structure and			
properties.			
5. Students should		Worksheets;	Test/problem
understand the		virtual lab	set
arrangement of the			
periodic table and			
trends in properties			
represented therein.			

Quarter 2

Essential Learning	Links to the	Formative	Summative
Competencies	Rubrics/Standards/Competency	Assessments	Assessments
1. Students should		Worksheets;	Test/problem
be able to		virtual lab	set
comprehend and			
write chemical			
nomenclature,			
including names and			
formulas, for the			
three major classes			
of compounds.			

2. Students should	Worksheets;	Test/problem
be able to classify	virtual lab	set
chemical		
compounds into one		
of the major classes		
based on physical		
and chemical		
properties.		
3. Students should	Worksheets;	Test/problem
be able to perform	virtual lab	set
mole calculations to		
interconvert		
chemical quantities.		
4. Students should	Worksheets;	Test/problem
be able to work with	virtual lab	set
data to determine		
empirical and		
molecular formulas.		
5. Students should	Worksheets;	Test/problem
be able to classify a	virtual lab	set
reaction as one of		
the five major types		
of chemical		
reaction.		
6. Students should	Worksheets;	Test/problem
be able to predict	virtual lab	set
the products of a		
chemical reaction,		
given the reactants.		

Quarter 3

E di 11	T ' 1	г .	G (
Essential Learning	Links to the	Formative	Summative
Competencies	Rubrics/Standards/Competency	Assessments	Assessments
1. Students should		Worksheets;	Test/problem
be able to		virtual lab	set
understand and			
mathematically			
manipulate			
information and			
data regarding			
solutions.			
2. Students should		Worksheets;	Test/problem
be able to predict		virtual lab	set
the occurrence and			
products of an			
aqueous reaction.			
3. Students should		Worksheets;	Test/problem
be able to draw the		virtual lab	set
correct Lewis			
structure for a given			
compound.			

4. Students should	Worksheets;	Test/problem
be able to assign a	virtual lab	set
compound to a		
VSEPR class based		
on the Lewis		
structure.		
5. Students should	Worksheets;	Test/problem
be able to perform	virtual lab	set
simple		
stoichiometric		
calculations to		
quantify amounts in		
a chemical reaction.		
6. Students should	Worksheets;	Test/problem
be able to determine	virtual lab	set
limiting and excess		
reactants and their		
amounts in a		
chemical reaction.		

Quarter 4

Essential Learning	Links to the	Formative	Summative
		Assessments	Assessments
Competencies	Rubrics/Standards/Competency		
1. Students should		Worksheets;	Test/problem
have a qualitative		virtual lab	set
grasp of			
thermodynamics			
and be able to			
explain heat flow			
using words.			
2. Students should		Worksheets;	Test/problem
have a quantitative		virtual lab	set
grasp of			
thermodynamics			
and should be able			
to explain heat flow			
using calculations.			
3. Students should		Worksheets;	Test/problem
understand and		virtual lab	set
explain the behavior			
of gases in a			
qualitative manner			
using kinetic			
molecular theory.			
4. Students should		Worksheets;	Test/problem
understand and		virtual lab	set
explain the behavior			
of gases in a			
quantitative manner			
using the gas laws.			
5. Students should		Worksheets;	Test/problem
understand the		virtual lab	set
anderstand the		v 11 tuu1 100	501

factors that affect		
reaction rate and be		
able to explain why		
they do so using		
collision theory.		
6. Students should	Worksheets;	Test/problem
understand chemical	virtual lab	set
equilibrium and be		
able to predict		
which way		
equilibrium will		
shift upon a stress to		
the system.		